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Abstract
The exchange mechanism effect on the ordering of electrons on eg orbitals in a two-dimensional
Heisenberg model with exchange anisotropy for a S = 1/2 spin is determined. The regions of
existence of long-range quasi-one- and two-dimensional antiferromagnetic order with the
special exchange topology are calculated by a quantum Monte Carlo method. The Nèel
temperature and quantum reduction of spin on site for an antiferromagnet with the stripe
structure is estimated as a function of exchange anisotropy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic materials with double orbital quasi-degeneration are
characterized not only by spin-dependent interactions, but also
by the dependence of the exchange integral on the mutual
position of the orbitals. The interplay of spins with the
charge-orbital ordering changes not only magnetic properties,
but also transport characteristics, for example, gives rise to
giant magnetoresistance in manganites. The orbital ordering
forms a quasi-one-dimensional antiferromagnetic ordering in
KCuF3 [1] and two-dimensional antiferromagnetic ordering in
NH4CuCl3 [2] at low temperatures.

When studying the ground state and low-temperature
effects in low-dimensional systems, one should remember that
the quantum fluctuations in a spin system are of significant
importance and, in the case of the strong interaction of spins
with orbitals through the exchange interaction, it must be
taken into account that the hopping integrals between the
neighboring 3d ions depends on both the orbital type and on
the mutual position of the sites, because the electron-density
distribution is not spherically symmetric.

The interrelation between the spin order and orbital
ordering is clearly illustrated in a Kugel’–Khomskii model [1]
for the Hamiltonian of perovskites (eg ions at the sites of a
simple cubic lattice), which is obtained from the multi-electron
Hamiltonian with the same exchange parameters J = 4t2/U ,
where t is the hopping integral and U is the Coulomb-repulsion
parameter at the site between electrons.

The physical origin of this peculiar situation is the strong
spatial anisotropy of the eg orbital wavefunctions. This type
of orbital ordering provides the largest energy gain due to
the quantum spin fluctuations. An orbital flip modulates the
strength of the neighboring exchange bond and causes the
existence of a strong antiferromagnetic exchange interaction
directed along the overlap of the orbitals, with a strong space
anisotropy of the exchange interactions that is typical of the
quasi-one-dimensional system in the presence of a gap in an
orbital excitation spectrum.

In addition to the ferro and antiferromagnetic ordering
of the d3z2−r2 orbitals, the ordering of the d3z2−r2 and
dx2−y2 orbitals is also possible on account of the fact
that the hopping integral between these orbitals may differ
substantially due to strong electron correlations. The strength
of the antiferromagnetic interaction is determined by the region
of the overlap of the 2p3d orbitals and depends on the orbital
eg state of an electron. The overlap integral between the dx2−y2

and px orbitals is Ex,α (l, m, n) = (
√

3/2)l(l2 − m2)(pdσ),
where (pdσ) is the overlap integral between the dσ - and pσ

orbitals and (l, m, n) is the unit vector along the direction
from a cation to an anion. The overlap integral between
d2x2−z2−y2 and px -orbitals is expressed as Ex,β (l, m, n) =
l[n2 − (l2 + m2)/2](pdσ) [3]. Then, the hopping amplitude
between adjacent copper ions via the p-orbital along the x-axis
is evaluated as t x

αβ = Ex,α (1, 0, 0)Ex,β (−1, 0, 0)/(ep−ed) [3],
where ep and ed are the energy levels for the d- and p-orbitals,
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respectively, and Ex,α and Ex,β are the overlap integrals of the
dx2−y2 and px orbitals and px and d2x2−z2−y2 orbitals, which will
be denoted as d2

x .
When the ratio of the hopping integrals is written as

tαα/tββ = 3/4 and tαβ/tββ = 1/4, the exchange interactions
between electrons on the dx2−y2 and d2x2−z2−y2 orbitals differ
by a factor of two: Jαα/Jββ = 0.56, whereas Jαβ/Jββ =
0.063.

The account for the Coulomb interaction between
electrons located both at a site and between different orbitals
will also lead to modification of the exchange parameters and
an alternation of the Jαα/Jββ relation between them. Below
we consider a model with one electron (hole) on the eg orbital
with an exchange interaction between them specified by a
parameter. This model is applicable to perovskites containing
Mn3+, Ni3+, Cu2+, and Fe2+ ions in octahedral environment.

This study is aimed at determining the effect of the
exchange interaction between eg electrons on the ordering
of d2x2−z2−y2 and dx2−y2 orbitals in a Mott insulator and
the estimation of a region of the parameters, at which
the magnetic order dimensionality changes from quasi-two-
dimensional to quasi-one-dimensional antiferromagnetic. The
exchange alternating in the spin Peierls quasi-two-dimensional
antiferromagnetic gives rise to disappearing long-range order
and to the formation of a singlet state. Possible the alternation
of exchange along one direction of the lattice as a result of
orbital ordering causes the instability of AF order.

2. Model and discussion

Let us consider a model with antiferromagnetic exchange
alternation and a stripe structure for a spin S = 1/2: the
Hamiltonian has the following form:

H = −
∑

i, j,α

(1 + δ)J αα Sα
i+1, j Sα

i+2, j

+ K αα(Sα
i+1, j Sα

i+1, j+1 + Sα
i+2, j Sα

i+2, j+1)

+ J αα Sα
i, j Sα

i+1, j + (1 − δ)J αα Sα
i, j Sα

i, j+1

+ J αα Sα
i+2, j Sα

i+3, j + (1 − δ)J αα
(
Sα

i+3, j Sα
i+4, j

+ Sα
i+3, j Sα

i+3, j+1

) −
∑

i

Hi S
z
i (1)

where J (1 + δ), J (1 − δ), J (J < 0) are the exchange
interactions between electrons located at the nearest d2x2 –
d2x2 , dx2−y2–dx2−y2 , dx2−y2–d2x2 orbitals, H is the external
magnetic field, η = J zz − J xx(yy)/J zz is the exchange
anisotropy value, K < 0 is the interchain exchange value
fixed in our calculations as K/J = 1/16. As a calculation
method, we have selected the quantum Monte Carlo method
that combines two algorithms, namely the world-line algorithm
and the continuous time algorithm for the spin S = 1/2 [4].
The continuous time world-line Monte Carlo approach is based
on an expansion of a statistical evolution operator e−H/T by
exchange interaction strength. The Hamiltonian is divided
into two parts: the diagonal part H0 ∼ J Sz

i Sz
j and the

nondiagonal part VJ ∼ J/2(S+
i S−

j + S−
i S+

j ). Following [4]
we express operators exp[−τ0(H0/2 + VJ )] on the imaginary
time segments τ0 in terms of the evolution operator σev in

the interaction representation exp(−τ0 H ) = exp(−τ0 H0)σev,
where

σev = 1 −
∫ τ0

0
dτVJ,α(τ ) + . . . + (−1)m

×
∫ τ0

0
dτm . . .

∫ τ2

0
dτ1VJ,α(τm) . . . VJ,α(τ1) + · · · (2)

and VJ,α(τ ) = eτ H0 VJ,α e−τ H0 , VJ,α|β〉 = −qγβ(J, α)|γ 〉.
The summation and integration of operator VJ in equation

is carried out using a stochastic procedure of sampling various
kink–antikink configurations in accordance with their weights.
The probability of the formation of a kink–antikink pair is
given by

W = |qγβ(J, α)|2 exp ((τ2 − τ1)Eγβ),

Eγβ = Eγ − Eβ, H0|γ 〉 = Eγ |γ 〉,
H0|β〉 = Eβ |β〉, (τ2 − τ1) < τ0.

(3)

A subprocess of kink shift along the time axis with
probability W = exp(	τ Eγβ) is possible. The use of global
spin flips at a site leads to a finite transition probability W ∼
qγβ on interval τ0. As a result, the total projection of the
spin changes and discontinuities are observed on world lines
with even numbers. Since computations lead only to an even
number of nondiagonal changes of trajectories q2n

γβ(J ) we
can avoid obtaining the minus sign due to an increase in the
systematic error [5]. As an eigenfunction of Hamiltonian H0,
we choose the Sz representation of ↑ and ↓ spins.

In the calculations a square lattice with L = 40, 48, 60, 72
and periodic boundary conditions is used. From 40 000 to
60 000 Monte Carlo steps (MCS) per site are spent to reach
equilibrium and another 80 000–100 000 MCS are used for the
averaging.

We consider two types of the orbital ordering that are
illustrated in figure 1. The d2x2 –d2x2 orbitals overlap gives rise
to a strong antiferromagnetic exchange and space anisotropy
of the exchange interactions in a lattice, which differ by more
than an order of magnitude. The magnetic properties of
such a system are similar to those of a quasi-one-dimensional
antiferromagnet. Alternation of pairs of the d2x2 –d2x2 ,
dx2−y2–dx2−y2 orbitals induces stripes along the [01] direction
and alternation of the exchange interactions along the [10]
direction, as one can see in figures 1(c) and (d). The magnetic
properties of systems with the two types of orbital ordering
have been analyzed on the basis of a spin–spin correlation
function 〈Sz(0)Sz(r)〉, staggered magnetization ms, a magnetic
structure factor S(q) = 1

N

∑
r exp(−iqr)Sz(0)Sz(r), energy

E and specific heat CkB/N = dE/dT . The temperature
dependences of the staggered magnetization and specific
heat are plotted in figure 2 for anisotropic AF with various
parameters of alternating exchange. The temperature at which
specific heat has its maximum and staggered magnetization
tends to zero is associated with the Nèel temperature.

Alternation of exchange along one of the lattice directions
enhances the quantum fluctuations, which results in a reducing
spin on site in the limit of 5%–9% in the range of parameters
0 < δ < 0.4 and decreasing Nèel temperature. The
normalized Nèel temperature, plotted in the inset to figure 3,
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a b

J(1+δ)

J(1-δ)

J

K

Figure 1. d2x2 –d2x2 (a) and dx2−y2 –d2x2 (b) orbital ordering.
Arrangement of the strong intrachain J (1 + δ) and weak interchain
K exchanges in a square lattice. The J -exchange is related to the
overlap of d2x2 –dx2−y2 orbitals; J (1 + δ) is related to the d2x2 –d2x2

orbitals, J (1 − δ) is the dx2−y2 –dx2−y2 orbitals overlap.

is well fitted by the linear function TN(δ)/TN(0) = 1 −
0.6δ for a series of anisotropy parameters. Monte Carlo
simulation of thermodynamic characteristic at larger δ and
interpolation of the linear function TN(δ)/TN(0) indicate
the stability of AF order as compared to disordered spin
state. A similar effect of the reduction of spin arises
from the exchange anisotropy. Staggered magnetization and
Nèel temperature of AF having the stripe structure rise with
increasing anisotropy as is shown in figure 3. The dependence
of TN(η) versus exchange anisotropy is interpolated better
by a power function TN(η)/J = 1/4η1/6 than a logarithmic
law. It differs from the behavior of an anisotropic Heisenberg
antiferromagnet with S = 1/2 on a square lattice that reveals
a logarithmic dependence TN(η)/J = 2/ ln(11/η) [6] and a
linear dependence of 1/σ versus ln(1/η) for η > 0.01 [7]. A
stripe structure is also observed at static charge disproportional
between the 3d elements in the oxide compounds [8, 9] and the
magnetic properties are considered in terms of the Heisenberg
model with a nonuniform distribution of exchange in the
lattice [10, 11].

We have determined the basic magnetic properties of a
two-dimensional magnet with the orbital ordering presented
in figure 1(b). As a consequence of low dimensionality of
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Figure 2. Staggered magnetization ms (a) and specific heat
CkB/N (b) of a magnet with the orbital ordering (figures 1(b)
and (d)) for the anisotropy η = 0.5, δ = 0.1(1).0.3(2), L = 60
versus temperature.
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Figure 3. Nèel temperature TN/J of the quasi-two-dimensional AF
at δ = 0.3(1) and fitting function TN/J = η1/6/4 (solid line) as a
function of exchange anisotropy (a). Inset: normalized Nèel
temperature TN(δ)/TN(0) versus alternating exchange at
η = 0.25(1), 0.5(2),0.75(3). Magnetization on the site σ calculated
by MC at T/TN = 0.2, L = 60 versus exchange anisotropy (b).
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Figure 4. Energy of a quasi-two-dimensional antiferromagnetic E2D

(figure 1(d)) and a quasi-one-dimensional antiferromagnetic with the
strong intrachain J (1 + δ) exchange normalized to the energy of the
E1D antiferromagnetic with the exchange ratio K/J = 1/16 for
η = 0.25, L = 40(1), 48(2), 60(3), 72(4) calculated at T/TN = 0.2
as a function of the exchange alternation.

the system, the quantum spin fluctuations may cause orbital
correlations and the ordering of the d2x2 –d2x2 orbitals. In this
case, spin interactions are quasi-one-dimensional along a chain
and favor a rise of exchange energy, which is proportional
to E/J = 0.44(1 + δ). Ising-like anisotropy suppresses
the quantum spin fluctuations and decreases the absolute
energy value from E/J = 0.44 to 0.25 with an increase in
the exchange anisotropy. With the growth of the exchange
alternation along the [10] direction, the energy of a 2D system
decreases due to a decrease in the interchain interaction.
Figure 4 illustrates the energy of a 2D magnet calculated for
several lattice sizes. The intersection of energies of the 1D and
2D magnets with the arrangement of bonds in a lattice as in
figures 1(c) and (d) determines the region of stability of the 2D
magnetic ordering with a stripe structure. A phase boundary
separating the region of existence of magnets with the d2x2 –
d2x2 and d2x2 –dx2−y2 orbital ordering is given in figure 5.

The quasi-one-dimensional AF ordering becomes stable
at δ > 0.2, η = 0, δ > 0.34, η → 1. The ratio of
exchanges in KCuF3 is J (dx2−y2 –dx2−y2)/J (d2x2 –dx2−y2) 	
0.78 that corresponds to δ ∼ 0.22. Exchange anisotropy is
small for the cubic crystal and according to our results the
ordering of the d2x2 –d2x2 orbitals is preferred. Orthorhombic
distortion of a structure in NH4CuCl3 induces modification
in a crystal field and in the intra-atomic Coulomb interaction
Udd between electrons in the orbital. The change in distance
and in angle of a bond between the nearest cations modifies
the overlap of the integral of the wavefunctions of the d2x2

and dx2−y2 orbitals. As a result, the ratio of amplitudes of
the hopping integrals may vary in the wide range 0.1 <

tαα/tββ < 1 because the hopping integral is t = E2/(ep −
ed + Udd). The exchange interaction between electrons on
the d2x2 –d2x2 orbitals decreases and the ratio of exchanges
J (dx2−y2 − dx2−y2)/J (d2x2 − d2x2 ) grows; this corresponds to
a decrease of the alternation parameter. As a consequence, the
variation of exchange interaction causes rearrangement of the
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Figure 5. Phase diagram of a magnet containing the regions of
quasi-two-dimensional AF with the orbital ordering d2x2 , dx2−y2

(lower line) and quasi-one-dimensional AF with d2x2 –d2x2 orbital
ordering (upper line) in a plane alternation–anisotropy exchange.

d2x2 and dx2−y2 orbitals and leads to strongly decreasing Nèel
temperature in NH4CuCl3 [2]. Orbital rearrangement leads to
modification of the spectral electron density near the top of a
valence band and near the bottom of a conductivity band.

3. Conclusion

We have analyzed the exchange mechanism of the ordering of
electrons on the eg orbitals using the Heisenberg model with
the special exchange topology on a square lattice. We have
found the exchange parameters associated with the relation
of the exchange interaction of electrons on the d2x2 –d2x2

and dx2−y2–dx2−y2 orbitals and exchange anisotropy, under
which the ordering of pairs of the d2x2 –d2x2 , dx2−y2 –dx2−y2

orbitals form a two-dimensional antiferromagnetic state with
a stripe structure. The region of existence of an quasi-one-
antiferromagnetic in the plane of anisotropy–alternation of
exchange has been calculated. Quantum reduction of spin on
a site for a quasi-two-dimensional antiferromagnet with stripe
structure versus exchange anisotropy has been estimated.
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